TOTAL SYNTHESIS OF STYELSAMINE C, AND FORMAL SYNTHESIS OF NORSEGOLINE

Shinsuke Nakahara* and Akinori Kubo

Meiji Pharmaceutical University
2-552-1, Noshio, Kiyose, Tokyo 204-8588, Japan

Abstract

Two fused tetracyclic aromatic alkaloids, styelsamine C (3) from the ascidian Eusynstyela latericius, and norsegoline (5) from the marine tunicate Eudistoma sp., were synthesized using a biaryl cross-coupling reaction.

Over the last decade, a series of structurally interesting and biologically active fused polycyclic aromatic alkaloids containing a pyrido[2,3,4-kl]acridine subunit has been isolated from marine sources. ${ }^{1}$

Figure 1

norsegoline

systodytin A-J

(6)

pantherinine (7)
styelsamine A-D

$4 \mathrm{R}=\left\{\sim \stackrel{+}{\mathrm{N}} \mathrm{H}_{3} \quad \mathrm{O}_{2} \mathrm{CCF}_{3}\right.$

varamine A, B $8 \mathrm{R}=$ propionyl

diplamine $\quad 10 \mathrm{R}=$ acetyl
$\begin{array}{ll}\text { lissoclin A, B } & 11 \mathrm{R}=\text { isovaleryl } \\ & 12 \mathrm{R}=\text { acetyl }\end{array}$

Systodytin A~J (6), isolated from Cystodytes dellechiaje, ${ }^{2}$ pantherinine (7), isolated from the ascidian Aplidium pantherinum, ${ }^{3}$ diplamine (10), isolated from Diplosoma sp., ${ }^{4}$ and lissoclin A, B (11, 12) isolated from ascidian Lissoclinum sp. ${ }^{5}$ contained an iminoquinolinequinone skeleton. Pantherinine (7) contains amino group and bromine, while alkaloid (10~12) and varamines A, B (8,9) isolated from the tunicate Lissoclinum vareau ${ }^{6}$ contain a methylthioether group. Styelsamines A~D (1) $\sim(4)$, which exhibit
mild cytotoxicity toward the human colon tumor cell line HCT-116, were obtained from the marine ascidian Eusynstyela latericius; ${ }^{7}$ the structures were confirmed by MS spectrometry and NMR spectral data. Norsegoline (5) was obtained from a marine tunicate Eudistoma sp. ${ }^{8}$ and its structure was confirmed on the basis of spectroscopic data.
Styelsamine C (3) and norsegoline (5) are the simplest compounds of the group and are important as precursors in the synthesis of a variety of complex marine alkaloids.
Previously we reported the first synthesis of pantherinine (7) ${ }^{9}$ and norsegoline (5) ${ }^{10}$ utilizing a biaryl cross-coupling reaction. ${ }^{11}$ Here, we report the synthetic detail of 3^{12} and formal synthesis of 5 .
The bromoquinoline (15) was obtained from 2-methoxy-4-methyl-5-nitroaniline (13) via thermolysis of arylaminomethylene Meldrum's acid derivative (14).

Nitroaniline (13) was treated with 5-methoxymethylidene-2,2-dimethyl-1,3-dioxane-4,6-dione ${ }^{13}$ under reflux for 2 h to give the enaminone (14) in 94% yield. Cyclization of 14 in refluxing diphenyl ether for 15 min followed by bromination with POBr_{3} at $70^{\circ} \mathrm{C}$ for 1.5 h afforded the 4-bromoquinoline (15) in 64% yield. Palladium(0)-catalyzed cross coupling reaction of 15 with phenylboronic acid gave the 4-phenylquinoline (16) in excellent yield. The 6-methyl group of $\mathbf{1 6}$ can be functionalized by condensation with N, N-dimethylformamide dimethyl acetal to provide the corresponding aminoalkene (17) in 91% yield and oxidation of $\mathbf{1 7}$ was accomplished with sodium periodate in 50% aqueous THF to provide the o-nitro aldehyde (18) in 90% yield. ${ }^{14}$ Oxidation of $\mathbf{1 8}$ with potassium permanganate in 50% aqueous acetone followed by O-methylation with excess diazomethane in ether for 4 h , afforded the ester (19) in 70% yield. The synthesis of norsegoline (5) from 19 has been reported. ${ }^{10}$

Scheme 2

18

a) $(\mathrm{EtO})_{3} \mathrm{P}$, reflux, 2 h
b) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 21 \mathrm{~h}$

$$
\mathrm{b}(20 \mathrm{R}=\mathrm{OMe}
$$

$$
86 \%>3 \mathrm{R}=\mathrm{OH}
$$

The intramolecular nitrene insertion reaction ${ }^{15}$ of $\mathbf{1 8}$ with triethyl phosphite under reflux for 2 h gave the tetracyclic compound (20) in 65% yield. Finally, demethylation of 20 with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature furnished styelsamine C (3) in 86% yield. The spectroscopic data of synthetic $\mathbf{3}$ and $\mathbf{1 9}$ matched those of the authentic samples in all respects.
In summary, two fused tetracyclic aromatic alkaloids, styelsamine C (3) and norsegoline (5), were synthesized via three key reactions, thermolysis of arylaminomethylene Meldrum's acid derivative, biaryl cross coupling of a 4-bromoquinoline with phenylboronic acid, and pyridoacridine ring formation by intramolecular nitrene insertion.

EXPERIMENTAL

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra at 270 MHz were measured in CDCl_{3} with tetramethylsilane as an internal standard. Anhydrous sodium sulfate was used for drying organic solvent extracts, and the solvent was removed with a rotary evaporator and finally under high vacuum. Column chromatography (flash chromatography) was performed with silica gel 60 (Merck, 230-400 mesh).

5-[[(2’-Methoxy-4'-methyl-5'-nitrophenyl)amino]methylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione

(14). A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione ($4.18 \mathrm{~g}, 29 \mathrm{mmol}$) in methyl orthoformate (38 mL) was refluxed for 2 h , and 2-methoxy-4-methyl-5-nitroaniline (13) ($4.39 \mathrm{~g}, 24 \mathrm{mmol}$) was immediately added. The mixture was refluxed for another 2 h . After the reaction mixture was cooled, the precipitated crystals were collected by filtration and recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ to give $\mathbf{1 4}$ (7.59 g, 94%) as yellow powder. mp $229-230^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 53.57 ; H, $4.80 ; \mathrm{N}, 8.33$. Found: C, 53.31 ; H, 4.83 ; N, 8.03. IR(KBr) cm ${ }^{-1}$: 1726, 1684, 1616, 1580, 1442, 1278, 1226, 1202. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 1.76(6 \mathrm{H}, \mathrm{s}), 2.69(3 \mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{s}), 8.14(1 \mathrm{H}, \mathrm{s}), 8.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz})$, $11.48(1 \mathrm{H}, \mathrm{br}$ d, $J=14.2 \mathrm{~Hz})$. Ms m/z (\%): 336(M ${ }^{+}$, 48), 278(100), 175(50).
4-Bromo-8-methoxy-6-methyl-5-nitroquinoline (15). A mixture of 14 ($336 \mathrm{mg}, 1 \mathrm{mmol}$) and diphenyl ether (13 mL) was refluxed for 15 min . The reaction mixture was cooled, and diluted with hexane (18 mL). The precipitated crystals were collected by filtration, and washed with hexane (3×5 mL). A mixture of crude crystals and $\mathrm{POBr}_{3}(1.4 \mathrm{~g})$ was stirred at $70^{\circ} \mathrm{C}$ for 1.5 h , poured onto ice (3 g), diluted with water (7 mL), adjusted to pH 7 with saturated aqueous NaHCO_{3} solution, and extracted with CHCl_{3} ($3 \times 7 \mathrm{~mL}$). The extract was washed with brine, dried, and concentrated. The residue was chromatographed (eluting with hexane-ethyl acetate $1: 1$) to afford $\mathbf{1 5}(190 \mathrm{mg}, 64 \%) . \mathrm{mp} 149-150^{\circ} \mathrm{C}$ (yellow crystals from CHCl_{3}-hexane). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}: \mathrm{C}, 44.47$; H, 3.05 ; N, 9.43. Found: C, $44.60 ; \mathrm{H}, 3.14 ; \mathrm{N}, 9.25$. $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 1524,1492,1352 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.49(3 \mathrm{H}, \mathrm{s}), 4.13(3 \mathrm{H}$, s), $6.92(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.65(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}) . \mathrm{Ms} \mathrm{m} / \mathrm{z}(\%): 298\left(\mathrm{M}^{+}+2,18\right), 296\left(\mathrm{M}^{+}, 18\right)$, 217(90), 187(100).
8-Methoxy-6-methyl-5-nitro-4-phenylquinoline (16). 2 M Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL}, 2 \mathrm{mmol})$ was added to a mixture of $\mathbf{1 5}(297 \mathrm{mg}, 1 \mathrm{mmol})$ and phenylboronic acid ($146 \mathrm{mg}, 1.2 \mathrm{mmol}$) in toluene (10 mL) and EtOH (0.52 mL) under argon. Tetrakis(triphenylphosphine)palladium(0)(35 mg, 0.03 mmol) was added to the vigorously stirred two-phase mixture, and the resulting mixture was refluxed for 3 h .

The reaction mixture was poured into water (50 mL), and extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The extract was washed with brine, dried, and concentrated. The residue was chromatographed (eluting with hexane-ethyl acetate $1: 2$) to afford $\mathbf{1 6 (2 7 9 ~ m g , ~ 9 4 \%) . ~ m p ~ 1 4 0 - 1 4 1 ~}{ }^{\circ} \mathrm{C}$ (light yellow prisms from CHCl_{3}-hexane). HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: 294.1005, Found: 294.1002. Ms m/z (\%): 294($\mathrm{M}^{+}, 66$), 248(100), 218(40), 204(28). IR(KBr) $\mathrm{cm}^{-1}: 1502,1464,1342,1240,1114 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $2.46(3 \mathrm{H}, \mathrm{s}), 4.17(3 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.27-7.33(2 \mathrm{H}, \mathrm{m}), 7.36-7.46(4 \mathrm{H}, \mathrm{m}), 8.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz})$.
8-Methoxy-6-[β-trans-($\mathbf{N , N - d i m e t h y l a m i n o) e t h e n y l] - 5 - n i t r o - 4 - p h e n y l q u i n o l i n e ~ (1 7) . ~ A ~ s o l u t i o n ~ o f ~}$ 16 ($177 \mathrm{mg}, 0.6 \mathrm{mmol}$) and N, N-dimethylformamide dimethyl acetal (3 mL) containing triethylamine (1 drop) was heated at $145^{\circ} \mathrm{C}$ in sealed tube for 48 h . The solvent was evaporated, and the residue was chromatographed (eluting with ethyl acetate) to afford $\mathbf{1 7}(190 \mathrm{mg}, 91 \%) \mathrm{mp} 219-220^{\circ} \mathrm{C}$ (red needles from CHCl_{3}-hexane). HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: 349.1426, Found: 349.1424. Ms $\mathrm{m} / \mathrm{z}(\%)$: $349\left(\mathrm{M}^{+}\right.$, 16), $332(100)$, $247(42)$, $218(46) . \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 1632,1604,1498,1390,1298,1242,1118 .{ }^{1} \mathrm{H}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right) \delta: 2.87(3 \mathrm{H}, \mathrm{s}), 4.14(3 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz})$, $7.28-7.54(4 \mathrm{H}, \mathrm{m}), 7.63-7.71(2 \mathrm{H}, \mathrm{m}), 8.76(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz})$.

8-Methoxy-5-nitro-4-phenyl-6-quinolinecarbaldehyde (18). A solution of 17 ($349 \mathrm{mg}, 1 \mathrm{mmol}$) and sodium periodate ($642 \mathrm{mg}, 3 \mathrm{mmol}$) was stirred in 50% aqueous THF (15 mL) at rt for 1 h . The reaction mixture was poured into cold water (50 mL) and the precipitated crystals were collected by filtration, and recrystallized from CHCl_{3}-hexane to give $\mathbf{1 8}\left(277 \mathrm{mg}, 90 \%\right.$) as light yellow prisms. mp 201-202 ${ }^{\circ} \mathrm{C}$. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: 308.0797, Found: 308.0802. Ms m/z (\%): 308(${ }^{+}, 22$), 262(100), 232(35), 204(35). $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 1688,1492,1378,1346,1118 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.25(3 \mathrm{H}, \mathrm{s}), 7.32-7.35(2 \mathrm{H}$, $\mathrm{m}), 7.41-7.51(3 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 10.01(1 \mathrm{H}, \mathrm{s})$.
Methyl 8-methoxy-5-nitro-4-phenylquinoline-6-carboxylate (19). A solution of 18(62 mg, 0.2 mmol) and potassium permanganate ($44 \mathrm{mg}, 0.28 \mathrm{mmol}$) was stirred in 50% aqueous acetone (8 mL) at rt for 3 h . The solution was concentrated under reduced pressure, and $\mathrm{MeOH}(6 \mathrm{~mL})$ was added to the residue. The insoluble materials were filtered off, and the filtrate was added to an ether solution containing excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$. The mixture was kept at rt for 4 h , then the water (100 mL) was added, and the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The extract was washed with brine, dried, and concentrated. The residue was recrystallized from CHCl_{3}-hexane to give (19)(48 $\mathrm{mg}, 70 \%$) as colorless crystals. mp 156.5-157.5 ${ }^{\circ} \mathrm{C}$. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: 338.0903, Found: 338.0904. Ms m/z (\%): 338($\mathrm{M}^{+}, 19$), 292(100), 232(36), 204(26). IR(KBr) $\mathrm{cm}^{-1}: 1726,1548,1374,1260,1232 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 3.86(3 \mathrm{H}, \mathrm{s}), 4.22(3 \mathrm{H}, \mathrm{s}), 7.22-7.50(6 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 9.06(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz})$.
12-Methylstyelsamine \mathbf{C} (20). A solution of $\mathbf{1 8}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ in triethyl phosphite (1 mL) was refluxed for 2 h , and evaporated. The residue was chromatographed (eluting with ethyl acetate) to afford $\mathbf{2 0}(18 \mathrm{mg}, 65 \%) . \mathrm{mp} 225-226^{\circ} \mathrm{C}$ (orange needles from CHCl_{3}-hexane). HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: 276.0899, Found: 276.0905. Ms m/z (\%): 276(M ${ }^{+}$, 100), 261(48), 247(21), 233(14), 203(15). IR(KBr) $\mathrm{cm}^{-1}: 3272,1642,1618,1598 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.08(3 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{s}), 7.22-7.28(2 \mathrm{H}, \mathrm{m})$, $7.54(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 9.83(1 \mathrm{H}, \mathrm{s})$, $12.44(1 \mathrm{H}, \mathrm{br}$ s).
Styelsamine C (3). To 12-methylstyelsamine (20)(31 mg, 0.1 mmol) was added a solution of BBr_{3} (1
$\mathrm{M} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~mL}$) under a dry nitrogen atmosphere. The solution was stirred at rt for 21 h , then poured into 1 M aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The extract was washed with brine, dried, and concentrated. The residue was recrystallized from CHCl_{3} to give styelsamine (3) (6.8 mg , 86%) as orange solid. mp 270-272 ${ }^{\circ} \mathrm{C}$. HRFABMS(glycerol, MH^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ 263.0821, Found 263.0826. $\mathrm{Ms}\left(\mathrm{FAB}\right.$, glycerol) $\mathrm{m} / \mathrm{z}(\%): 263\left(100, \mathrm{MH}^{+}\right) . \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3296,1648,1620,1514$, 1248. ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta: 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$ Hz), $8.30\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}\right.$), $8.81\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}\right.$), $9.91(\mathrm{~s}, 1 \mathrm{H}), 12.02(\mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 108.25,109.32,113.09,116.77,117.71,117.78,122.94,124.27,132.46,134.79,137.06$, 140.42, 143.14, 143.92, 152.16, 191.76.

REFERENCES AND NOTES

1 (a) T. Ozturk, "The Alkaloid", Vol. 49, ed. by Cordell, G. A., Academic Press Inc., New York, 1997, pp. 79-220. (b) D. Skyler and C. H. Heathcock, J. Nat. Prod., 2002, 65, 1573.
2 (a) L. A. McDonald, G. S. Eldredge, L. R. Barrows, and C. M. Ireland, J. Med. Chem., 1994, 37, 3819. (b) J. Kobayashi, J. Cheng, M. R. Walchi, H. Nakamura, Y. Hirata. T. Sasaki, and Y. Ohizumi, J. Org. Chem., 1988, 53, 1800. (c) A. R. Carroll, N. M. Cooray, A. Poiner, and P. J. Scheuer, J. Org. Chem., 1989, 54, 4231.
3 J. Kim, E. O. Pordesimo, S. I. Toth, and F. J. Schmitz, J. Nat. Prod., 1993, 56, 1813.
4 G. A. Charyula, T. C. McKee, and C. M. Ireland, Tetrahedron Lett., 1989, 30, 4201.
5 P. A. Searle and T. F. Molinski, J. Org. Chem., 1994, 59, 6600.
6 T. F. Molinski and C. M. Ireland, J. Org. Chem., 1989, 54, 4256.
7 B. R. Copp, J. Jompa, A. Tahir, and C. M. Ireland, J. Org. Chem., 1998, 63, 8024.
8 A. Rudi and Y. Kashman, J. Org. Chem., 1989, 54, 5331.
9 S. Nakahara, J. Matsui, and A. Kubo, Tetrahedron Lett., 1998, 39, 5521.
10 Y. Kitahara, H. Onikura, and A. Kubo, Nat. Prod. Lett., 1993, 2, 159.
11 N. Miyaura and A. Suzuki, Synth. Commun., 1981, 11, 513.
12 S. Nakahara and A. Kubo, Heterocycles, 2003, 60, 2017.
13 R. Cassis, R. Tapia, and J. A. Valderrama, Synth. Commun., 1985, 15, 125.
14 E. C. Riesgo, X. Jin, and R. P. Thummel, J. Org. Chem., 1996, 61, 3017.
15 R. J. Sundberg, B. P. Dass, and R. H. Smith, Jr., J. Am. Chem. Soc., 1969, 91, 658.

